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Electric field of a 2D elliptical charge distribution inside a cylindrical conductor∗
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By combining the method of images with calculus of complex variables, we provide a simple
expression for the electric field of a two-dimensional (2D) static elliptical charge distribution inside
a perfectly conducting circular cylinder. The charge distribution need not be concentric with the
cylinder.

I. INTRODUCTION

Many applications in beam physics, particularly those
concerning transverse beam dynamics, call for an approx-
imate computation of the transverse electric field pro-
duced by the charge distribution of the beam, namely
the field components in the plane perpendicular to the
beam motion. Mathematically, this approximation be-
comes exact in the limit of an infinitely long charge distri-
bution that is also constant in the longitudinal direction.
In practice, the approximation is a reasonable starting
point in many cases. Examples include proton beams
used in spallation neutron sources, or heavy-ion fusion
ion beams, in which the characteristic length of variation
of the charge density along the longitudinal direction is
much larger than the transverse beam size. In this case
the longitudinal component of the electric field is much
smaller than the transverse, hence the field is effectively
contained in the 2D transverse plane. Another example
arises in the case of ultra-relativistic beams, for which
the electric field is effectively squeezed into a 2D trans-
verse “pancake” owing to the Lorentz contraction of the
longitudinal component of the field. Furthermore, the
approximation of an elliptical charge distribution, as de-
fined in Sec. II below, is also a reasonable starting point
for numerous beam dynamics problems both for lepton
and hadron beams. A few recent examples can be found
in Refs. [1–3].

In Ref. 4 we developed a formalism to compute the
2D electric field for elliptical charge distributions in free
space. The formalism makes essential use of Cauchy’s
theorem, and yields a simple and quite general formula
for the field in complex form. In this article we extend
the formalism to elliptical distributions contained inside
a perfectly conducting circular cylinder by applying the
method of images.

Our formalism naturally yields the electric field itself
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E rather than the electric potential Φ. The fundamental
reason is that, in two dimensions, E has a dependence on
distance r of the form E ∼ 1/r, which lends itself nat-
urally to analysis via Cauchy’s theorem. On the other
hand, the potential has a dependence on distance of the
form Φ ∼ ln r, which is much more complicated to deal
with in this formalism. For this reason, our results are
not directly applicable to Hamiltonian analysis, since this
requires an expression for the potential. While the an-
alytic solution of the problem addressed here is known
[1–3], our formalism, we believe, has the advantage of
simplicity, ease of generalization, direct applicability to
particle tracking and, in our opinion, elegance.

In Sec. II we recapitulate the results for free space and
define our notation, which differs slightly from Ref. 4. In
Sec. III we define the image electric field produced by
the conducting cylinder. We first establish a few prop-
erties valid for any charge distribution (not necessarily
elliptical), and then obtain the explicit expression for
the field for elliptical distributions. Sec. IV presents a
few concrete examples, Sec. V contains a brief discussion
concerning a generalization of the previous results to ex-
tended distributions, and the Appendix presents a few
auxiliary results.

II. RECAP: FREE SPACE

We consider a static charge distribution that depends
only on the two coordinates x and y and is infinitely long
along the direction perpendicular to the x− y plane. We
write the volumetric charge density in the somewhat un-
conventional form λρ(x, y), where λ is the line charge
density (with dimensions of charge/length) of the dis-
tribution along the direction perpendicular to the x − y
plane, and ρ(x, y), with dimensions of 1/area, is a real
function normalized to unity,∫

dxdy ρ(x, y) = 1 . (1)

For this distribution, the electric field has only nonzero
components in the x− y plane,

E = (Ex, Ey, 0) . (2)



2

The solution of Poisson’s equation in free space,
∇·E(x) = λρ(x)/ε0, at the observation point x = (x, y),
subject to the condition |E(x)| → 0 as |x| → ∞, is

E(x) =
λ

2πε0

∫
d2x′

x− x′

|x− x′|2
ρ(x′, y′) (3)

where ε0 is the vacuum permittivity. We now define the
“2D electric field” (Ex, Ey), with dimensions of 1/length,
via

E ≡ λ

4πε0
(Ex, Ey, 0) (4)

and the “2D complex electric field” E via

E ≡ Ex + iEy . (5)

Eq. (3) is then straightforwardly rewritten in the form

E(z) = 2
∫

d2z′
ρ(z′)
z̄ − z̄′

(6)

where z ≡ x + iy, z′ ≡ x′ + iy′, the bar denotes complex
conjugation, and d2z′ ≡ dx′dy′. We use the notation
ρ(z′) rather than the more explicit form ρ(x′, y′) for com-
pactness of notation; it should always be kept in mind,
however, that ρ(z′) is a real function of x′ and y′.

Clearly, E(x) and E(z) contain exactly the same infor-
mation. The essential advantage of Eq. (6) over Eq. (3),
however, is that Eq. (6) allows the power of complex cal-
culus, particularly Cauchy’s theorem, to be brought to
bear on the computation of the field [4].

We consider first elliptical charge distributions cen-
tered at x = y = 0, namely those for which ρ(x, y) de-
pends on x and y only through the single dimensionless
variable

t =
x2

a2
+

y2

b2
(7)

rather than on x and y separately. We consider in this
article only distributions of finite extent, so that a and
b represent the semiaxes of the ellipse representing the
edge of the distribution. This implies that t is in the
range 0 ≤ t ≤ 1 or, equivalently, ρ(t) = 0 for t > 1 (we
assume, without any loss of generality that a ≥ b). This
class of distributions can be expressed in the general form

ρ(z) =

∞∫
0

dt ρ(t) δ

(
x2

a2
+

y2

b2
− t

)
(8)

so that Eq. (1) yields∫
d2z ρ(z) = πab

∞∫
0

dt ρ(t) = 1 . (9)

Defining the dimensionless density ρ̂(t) ≡ πabρ(t), which
is normalized to unity,

∞∫
0

dt ρ̂(t) = 1 , (10)

then the basic result of Ref. 4 is1

E(z) =

|ξ|2∫
0

dt
2ρ̂(t)√
z̄2 − tg2

(11)

where g2 ≡ a2 − b2 and ξ ≡ x/a + iy/b.
Now if the elliptical 2D density is centered at the point

(x0, y0), then

ρ(z) =

∞∫
0

dt ρ(t) δ

(
(x− x0)2

a2
+

(y − y0)2

b2
− t

)
(12)

therefore Eqs. (6) and (11) yield, upon a shift of integra-
tion variable z′ → z′ + z0,

Ed(z) =

T∫
0

dt
2ρ̂(t)√

(z̄ − z̄0)2 − tg2
(13)

where z0 ≡ x0+iy0, T ≡ |ξ − ξ0|2, and ξ0 ≡ x0/a+iy0/b.
We have appended the subscript “d” to E to emphasize
that this is the “direct” field, as opposed to the image
field produced by the cylindrical boundary, which we ad-
dress below.

The integral in Eq. (13) can be explicitly carried out
for a significant class of interesting densities ρ̂(t); several
examples for z0 = 0 are presented in Ref. 4. For z0 6= 0,
the expressions for Ed(z) are obtained from those for z0 =
0 by the simple replacement (x, y) → (x− x0, y − y0).

The complex square root in Eqs. (11) and (13) is made
well-defined by a specific choice of the Riemann cut topol-
ogy in the complex-z plane. Only one of the two possible
topologies, namely the one in which the two Riemann
cuts emanating out of the foci of the ellipse are joined
together, yields the physically correct results [4]; see also
Sec. 1 of the Appendix.

III. CIRCULAR CYLINDER

A. Generic distributions.

A point charge at location z inside a cylinder of radius
R centered at the origin of the x− y plane has an image
point charge of the same magnitude and opposite sign
located at point zi outside the cylinder given by

zi =
R2

z̄
. (14)

Therefore, the complex electric field at an observation
point z inside the cylinder produced by a unit point

1 In Ref. 4 we included the line density λ in the definition of E.
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charge at location z′, also inside the cylinder, is the
Green’s function [5]

G(z, z′) =
2

z̄ − z̄′
− 2

z̄ − z̄′i
(15)

where z̄′i ≡ R2/z′, hence the field for a general distribu-
tion ρ(z) contained inside the cylinder is given by

E(z) =
∫

d2z′ G(z, z′)ρ(z′) . (16)

The perfect-conductor boundary condition, namely
that the vector (Ex, Ey) must be perpendicular to the
surface at the cylindrical boundary, (Ex, Ey)× (x, y) = 0,
can be succintly expressed in the form

Im(z̄E(z)) = 0 . (17)

It is sufficient to verify this property for G(z, z′) for any
fixed z′ inside the cylinder and for any z on the boundary,
as Eq. (16) is a simple superposition of such contributions
with the real weight ρ(z′). Substituting Eq. (15) into the
left-hand side of Eq. (17) readily yields Im(z̄G(z, z′)) = 0
upon setting z = Reiθ for arbitrary real θ.

Note that, although the integral in Eq. (16) is over
the entire complex-z′ plane, it is effectively confined to
the region where ρ(z′) is nonvanishing. An alternative
expression for the field can be given by finding the im-
age distribution ρi(z) and adding up the contributions
to E(z) from both ρ(z) and ρi(z) as if they were two
independent, physical charge distributions,

E(z) =
∫

d2z′
2

z̄ − z̄′
(ρ(z′) + ρi(z′)) . (18)

Since the integral in Eq. (18) is over the entire complex-
z′ plane, the first term picks up only the contribution
from the direct charge density ρ(z′), which is inside the
cylinder, while the second term picks up only the con-
tribution from the image charge density ρi(z′), which is
outside the cylinder. A straightforward change of inte-
gration variable in Eqs. (15-16) yields

ρi(zi) = − R4

|zi|4
ρ(z) (19)

where zi and z are related by Eq. (14). Sample images
of round and elliptical distributions are shown in Figs. 1
and 2; see also Sec. 2 of the Appendix.

The complex image field Ei(z), namely the second term
in Eqs. (15-16),

Ei(z) = −2
∫

d2z′
ρ(z′)
z̄ − z̄′i

, (20)

is an analytic function of z̄ when z is inside the cylinder,
as it should be according to the discussion in Sec. 1 of
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FIG. 1: The black circle represents the cross-section of a per-
fectly conducting circular cylinder of radius R centered at the
origin. The image of any given circle (red) is a circle (blue),
but the image of a 2D round charge distribution, represented
by the red concentric level circles, is not a round charge dis-
tribution because the images of the various level circles are
not concentric: the charge density of the image distribution
is higher at edge closer to the cylinder than at the farther
edge, following the inverse 4th power of the distance, accord-
ing to Eq. (19). The image of the center of any given circle is
not the center of the image of the circle; see Eq. (A.5).

Ref. 4 (see also Sec. 3 of the Appendix). Indeed, substi-
tuting z̄′i = R2/z′ in Eq. (20) yields the Taylor expansion
about the origin

Ei(z) =
2
R

∞∑
n=0

Mn+1

( z̄

R

)n

(21)

where Mn is the nth moment of ρ(z) normalized to Rn,

Mn ≡
〈zn〉
Rn

=
1

Rn

∫
d2z ρ(z)zn . (22)

In particular, Ei(z) has the curiously simple property

Ei(0) =
2 〈z〉
R2

, (23)

valid for any ρ(z).
The series (21) converges everywhere inside the cylin-

der, a fact that follows from standard convergence tests
upon noticing that |Mn| ≤ 1. In general, however, the
radius of convergence is larger than R because Ei(z) is an-
alytic everywhere outside the image density ρi(z). The
radius of convergence of the series (21), therefore, is the
distance of closest approach to the origin of the edge of
ρi(z).
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FIG. 2: The image of an elliptical distribution (red) is a
mussel-shell shape distribution (blue). The level curves of
the image are quartic, not quadratic.

B. Elliptical distributions.

We can now compute the complex image field Ei(z)
at an observation point z inside the cylinder of radius
R produced by the elliptical distribution (12) that is
also wholly contained within the cylinder. Inserting
z′i = R2/z̄′ and zi = R2/z̄ yields

1
z̄ − z̄′i

=
1
z̄
− zi/z̄

zi − z′
(24)

therefore

Ei(z) = −2
z̄

+
2zi

z̄

∫
d2z′

ρ(z′)
zi − z′

= −2
z̄

+
2zi

z̄

Ti∫
0

dt
ρ̂(t)√

(zi − z0)2 − tg2
(25)

where the last equality follows from the same steps de-
scribed in Ref. 4, and Ti is given by

Ti =
(

xi − x0

a

)2

+
(

yi − y0

b

)2

. (26)

Since zi is always outside the charge distribution (in fact
outside the cylinder), then Ti > 1 for any z, hence Ti

can be effectively replaced by 1 in the integral over t.
Substituting zi = R2/z̄ yields

Ei(z) = −2zi

R2
+

2z2
i

R2

1∫
0

dt
ρ̂(t)√

(zi − z0)2 − tg2
, (27)

which constitutes the central result of this article.
Despite its singular appearance, Eq. (27) is regular in

the limit z → 0 (corresponding to zi →∞), yielding

Ei(0) =
2z0

R2
=

2
z̄0i

(28)

for any ρ̂(t), in agreement with the general result (23).
The expression for 〈zn〉 is derived in Sec. 4 of the Ap-
pendix.

The final general result for the 2D complex electric field
is therefore E(z) = Ed(z) + Ei(z), where the direct and
image fields are given by Eqs. (13) and (27), respectively.

IV. EXAMPLES

A. Point charge.

As a simple first case, consider a point charge at z0,
corresponding to ρ̂(t) = δ(t). Using the appropriate Rie-
mann cut topology yields

E(z) =
2

z̄ − z̄0
− 2

z̄
+

2zi/z̄

zi − z0

=
2

z̄ − z̄0
− 2

z̄ − z̄0i
(29)

where z0i = R2/z̄0 is the image of z0, in agreement with
Eq. (15).

B. Round distribution.

Setting g = 0 in Eqs. (13) and (27) yields

E(z) =
2Q(z)
z̄ − z̄0

− 2
z̄ − z̄0i

(30)

where

Q(z) ≡
T∫

0

dt ρ̂(t) (31)

and where T = |z − z0|2 /a2. If z is outside ρ(z), then
T > 1 hence Q(z) = 1, and Eq. (30) reduces to Eq. (29).
This is the well-known result that, outside a round dis-
tribution, the field behaves as if the distribution were
point-like with all its charge concentrated at its center.

C. Uniformly charged ellipse.

For a uniformly charged elliptical distribution, given
by ρ̂(t) = θ(1− t), we obtain from Eq. (27)

Ei(z) = −2
z̄

+
4zi/z̄

zi − z0 +
√

(zi − z0)2 − g2
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=
2zi

R2

[
zi + z0 −

√
(zi − z0)2 − g2

zi − z0 +
√

(zi − z0)2 − g2

]
, (32)

while the direct field is obtained from Eq. (13) [4],

Ed(z) =


4(ξ − ξ0)

a + b
, |ξ − ξ0| ≤ 1

4
z̄ − z̄0 +

√
(z̄ − z̄0)2 − g2

, |ξ − ξ0| ≥ 1

(33)
where ξ − ξ0 = (x− x0)/a + i(y − y0)/b.

For more complicated distributions, for example those
for which ρ̂(t) is a polynomial in t, the integral over t
in Eqs. (13) and (27) can be done straightforwardly by
recursion. The results can generally be expressed quite
compactly in terms of z̄ − z̄0 and the auxiliary complex
variables ξ−ξ0 and ω−ω0 ≡ b(x−x0)/a+ia(y−y0)/b, as
exemplified by the parabolic distribution ρ̂(t) = 2(1− t)
in Ref. 4.

V. DISCUSSION

For charge distributions that are mathematically infi-
nite in extent but in practice well localized within the
cylinder, Eq. (27) yields a good approximation for Ei(z)
by replacing the top limit of the integral over t by ∞.
For example, for a bi-gaussian distribution of RMS sizes
σx, σy � R whose center is at a distance d of closest ap-
proach to the cylinder boundary such that d � σx, σy,
Ei(z) can be expressed in terms of the complex error
function, similarly to the direct field Ed(z), by choosing
ρ̂(t) = 1

2e−t/2 [4, 6].
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APPENDIX: MISCELLANEOUS ITEMS

1. Computational issues.

In the above expressions for the complex electric field
we find square roots of the form

S(w) ≡
√

w2 − g2 (A.1)

where w is a generic complex variable representing any
of the variables z̄, z̄ − z̄0, zi − z0, etc. We have found
that, when numerically evaluating square roots of this
type, FORTRAN and other programs that feature com-
plex arithmetic yield the incorrect result because they
select, by default, the incorrect Riemann cut. One way

to get around this problem, which we have found to be
effective, is to rewrite S(w) in the form

S(w) = w
√

1− g2/w2 . (A.2)

In this case S(w) is, usually, properly evaluated. In par-
ticular, this expression yields S(w) = w when g → 0,
which corresponds precisely to the function defined by
the proper Riemann cut topology in this limit [4]. In
general, it is desirable in practice to verify that S(w) sat-
isfies the required odd-parity property S(−w) = −S(w)
and the mirror symmetry properties ReS(wx,−wy) =
+ReS(wx, wy) and ImS(wx,−wy) = −ImS(wx, wy) and
their permutations, for w in any quadrant (here wx and
wy are the real and imaginary parts of w, respectively).
Expression (A.2), of course, requires an exception han-
dling at w = 0, a very minor complication.

2. Linear fractional mappings.

Aside from the inconsequential complex conjugation,
expression (14) is a particular example of a “linear frac-
tional mapping” in the complex plane [7], whose general
form is2

zi =
αz + β

γz + δ
(A.3)

where α, β, γ and δ are, in general, complex constants
satisfying γ 6= 0 and αδ−βγ 6= 0. An interesting property
of Eq. (A.3) is that it maps generic circles and straight
lines into circles (but does not map ellipses into ellipses).3
In particular, the image of a circle of radius r centered at
z0, |z − z0| = r, produced by the simple image mapping
(14) is the circle |zi − ci| = ri, where the center ci and
radius ri are given by

ci =
R2z0

|z0|2 − r2
, ri =

R2r

| |z0|2 − r2|
. (A.4)

We note that the image of the center of the circle, z0i, is
not the center of the image of the circle, ci. Rather, they
are related by

1
ci

=
1

z0i
− (r/R)2

z0
. (A.5)

3. Analyticity of E(z).

Consider a function F (z), not necessarily analytic, that
vanishes outside a closed domain D in the complex-z

2 We stick to the traditional but unfortunate convention of using
the adjective “linear” in the name.

3 In exceptional cases, it maps circles into straight lines and
straight lines into straight lines.
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plane. Then the function f(z) defined by the integral

f(z) =
∫

d2z′
F (z′)
z − z′

, (A.6)

which we assume to exist, is analytic outside D. To prove
this elementary theorem, one has only to verify that the
Cauchy-Riemann conditions, namely

∂fx

∂x
=

∂fy

∂y
and

∂fx

∂y
= −∂fy

∂x
(A.7)

are valid for f(z). Now since the integral in Eq. (A.6)
exists, one may bring ∂/∂x and ∂/∂y inside the integral,
and the theorem reduces to proving that (z− z′)−1 is an
analytic function of z. But this is indeed the case because
(a) (z−z′)−1 satisfies the Cauchy-Riemann conditions for
z 6= z′, and (b) z− z′ never vanishes because z is outside
D.

By taking complex conjugate of Eq. (A.6) one con-
cludes that f̄ is an analytic function of z̄ whenever z
(not z̄) is outside D. Therefore, using the expression

Ei(z) = 2
∫

d2z′
ρi(z′)
z̄ − z̄′

(A.8)

one concludes that Ei(z) is an analytic function of z̄ when-
ever z is outside ρi(z), while Eq. (6) implies that Ed(z)
is an analytic function of z̄ whenever z is outside ρ(z).
The first statement is exemplified by Eq. (32) upon re-
calling that zi = R2/z̄, while the second is manifestly
exemplified by Eq. (33) for the case |ξ − ξ0| ≥ 1.

4. Moments of an elliptical distribution.

Inserting Eq. (12) into Eq. (22) we obtain

〈zn〉 =

1∫
0

dt ρ̂(t)Pn(t) (A.9)

where we have defined

Pn(t) ≡ 1
πab

∫
d2z znδ

(
(x− x0)2

a2
+

(y − y0)2

b2
− t

)
.

(A.10)
Making the shift of integration variable z → z + z0 fol-
lowed by (x, y) = r(a cos φ, b sinφ) we obtain

Pn(t) =

2π∫
0

dφ

π

∞∫
0

rdr (z0 + ar cos φ + ibr sinφ)nδ(r2 − t)

=

2π∫
0

dφ

2π

(
z0 + a

√
t cos φ + ib

√
t sinφ

)n

. (A.11)

Now changing the integration variable from φ to ζ ≡ eiφ

we obtain a counterclockwise line integral over the unit
circle in the complex-ζ plane,

Pn(t) =
1

2πi

∮
|ζ|=1

dζ

ζ

(
z0 + Aζ + Bζ−1

)n
(A.12)

where A ≡ (a+b)
√

t/2 and B ≡ (a−b)
√

t/2. Expanding
the parenthesis yields(

z0 + Aζ + Bζ−1
)n

=
n∑

k=0

k∑
m=0

(
n

k

)(
k

m

)
zn−k
0 (Aζ)m(Bζ−1)k−m . (A.13)

By Cauchy’s theorem only the terms ∝ ζ0 in Eq. (A.13)
yield a nonzero contribution to Eq. (A.12). This implies
m = k −m hence m = k/2, hence k = even. Therefore,
setting k = 2`, we obtain

Pn(t) = n! zn
0

[n/2]∑
`=0

t`

(n− 2`)! `!2

(
g

2z0

)2`

(A.14)

where [n/2] is the largest integer ≤ n/2. Eq. (A.9) im-
plies that the moment 〈zn〉 is obtained from Eq. (A.14)
by the simple replacement t` → 〈t`〉, where

〈t`〉 ≡
1∫

0

dt ρ̂(t)t` (A.15)

hence

Mn = n!
(z0

R

)n
[n/2]∑
`=0

〈t`〉
(n− 2`)! `!2

(
g

2z0

)2`

. (A.16)

For a centered distribution (z0 = 0), Eq. (A.16) yields

Mn =
n!

(n/2)!2
( g

2R

)n

〈tn/2〉 (A.17)

if n = even, and Mn = 0 if n = odd, while for a round
distribution (g = 0), Eq. (A.16) yields

Mn =
(z0

R

)n

. (A.18)
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